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a b s t r a c t

An extension of the synchronous parallel kinetic Monte Carlo (spkMC) algorithm developed
by Martinez et al. [J. Comp. Phys. 227 (2008) 3804] to discrete lattices is presented. The
method solves the master equation synchronously by recourse to null events that keep
all processors’ time clocks current in a global sense. Boundary conflicts are resolved by
adopting a chessboard decomposition into non-interacting sublattices. We find that the
bias introduced by the spatial correlations attendant to the sublattice decomposition is
within the standard deviation of serial calculations, which confirms the statistical validity
of our algorithm. We have analyzed the parallel efficiency of spkMC and find that it scales
consistently with problem size and sublattice partition. We apply the method to the calcu-
lation of scale-dependent critical exponents in billion-atom 3D Ising systems, with very
good agreement with state-of-the-art multispin simulations.

Published by Elsevier Inc.
1. Introduction

Kinetic Monte Carlo (kMC) [1] has proven an efficient and powerful tool to study non-equilibrium processes, and is used
in fields as different as population dynamics, irradiation damage, or crystal growth [2,3]. The most widely used variants of
the method are the rejection-free Monte Carlo time residence algorithm [4] and the so-called n-fold method, or BKL in ref-
erence to its authors [5]. Although kMC is generally capable of advancing the time scale significantly faster than direct,
time-driven methods, it suffers from numerical limitations such as stiffness [6], and time asynchronicity. This has spurred
the development of more powerful variants such as coarse-grained kMC [7], first-passage kMC [8], and other accelerated
methods [9]. Additionally, a number of parallelization schemes for kMC have been proposed, including rigorous and
semi-rigorous algorithms based on asynchronous kinetics [10–12]. These methods rely on cumbersome roll-back procedures
to avoid causality errors, i.e. event time incompatibilities associated with processor communications. For this reason, most
applications of interest are studied using approximate schemes (non-rigorous) for computational convenience. In spite of
this, calculations using asynchronous parallel kMC have provided numerous insights in several studies, most notably crystal
growth [13].

Recently, we have developed and alternative algorithm based on a synchronous time decomposition of the master equa-
tion [14]. Our parallel kinetic Monte Carlo method, eliminates time conflicts by recourse to null events that advance the
internal clock of each processor in a synchronized fashion without altering the stochastic trajectory of the system. The meth-
od has been demonstrated for continuum diffusion/reaction systems, which represents a worst-case application scenario for
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two reasons. First, the maximum time step gain is limited by the intrinsic length scale of the problem at hand, which in con-
centrated systems may not be large; second, spatial boundary errors are difficult to eliminate due to the unbounded nature
of diffusion in a continuum setting. This latter feature also limits the parallel efficiency of the algorithm, as global commu-
nications are needed during every Monte Carlo step. In any case, in our synchronous parallel kMC method (spkMC), the par-
allel error can always be computed intrinsically and reduced arbitrarily (at the expense of efficiency). In this paper, we
extend spkMC to lattice systems, where diffusion lengths are quantized and boundary errors can be eliminated altogether.
First, we adapt the algorithm proposed in Ref. [14] to discrete systems. Due to its widespread use and well-known properties,
we have chosen the three-dimensional (3D) Ising system as our underlying lattice model. Second, we analyze the perfor-
mance of the method in terms of stochastic bias (error) and parallel efficiency. We then apply spkMC to large systems near
the critical point, which provides a demanding testbed for the method, as this is where fluctuations are exacerbated and con-
vergence is most difficult.

2. The 3D ising model

The Ising model is one of the most extensively studied lattice systems in statistical mechanics. It consists of a lattice of N
sites occupied by particles whose state is described by a variable ri that represents the spin of each particle and can take only
the value ± 1. For pair-interactions, the Hamiltonian that gives the energy of configurational state r = {ri} takes the form:
HðrÞ ¼ �J
X
hi;ji

rirj � H
X

i

ri; ð1Þ
where J is the coupling constant between neighboring pairs hi, ji and H is an external (magnetic) field. The time evolution of
the system is assumed to be described by a master equation with Glauber dynamics [15], which states that the probability
p(r, t) of finding the system in state r at time t obeys the equation:
@pðr; tÞ
@t

¼
X

i

W iðrÞpðr; tÞ �W iðr0Þpðr0; tÞ½ �; ð2Þ
where r0 denotes the configuration obtained from r by flipping the ith spin with transition rate W iðrÞ:
W iðrÞ ¼
k
2

1� ri tanhð2bDEiÞ½ �: ð3Þ
Here k is a positive constant that represents the natural frequency of the system, b is the reciprocal temperature, and
DEi ¼ �J

P
hi;jirj � Hri is the energy associated with spin i, which follows directly from Eq. (1). In what follows we consider

only internally-driven systems (H = 0).
Many discrete systems can be mapped exactly or approximately to the Ising system. The grand canonical ensemble for-

mulation of the lattice gas model, for example, can be mapped exactly to the canonical ensemble formulation of the Ising
model. Also, binary alloy hamiltonians with nearest-neighbor interactions in rigid lattices can also be expressed as Ising
hamiltonians. These mappings allow us to exploit results and behaviors of the Ising model to answer questions about the
related models. In addition, the Ising system is particularly useful to study second-order phase transitions. The temperature
Tc at which such transitions occur is known as the critical temperature. During the phase transition, thermodynamic quan-
tities diverge according to power laws of T, whose exponents are known as the critical exponents. The nature of the phase
transition is determined by whether the order parameter is continuous at Tc [16]. In a ferromagnetic system such as the Ising
model, the order parameter is the net magnetization m(r):
mðrÞ ¼ 1
N

X
i

ri: ð4Þ
For simple cubic lattices in 3D, N = L3 is the number of sites and L the lattice size. As we approach the critical temperature from
T > Tc, uncorrelated groups of spins align themselves in the same direction. These clusters grow in size, known as the correlation
lengthn, which too diverges at the critical point. At T = Tc, one may theoretically encounter arbitrarily large areas with correlated
spins pointing in one direction. In finite systems the upper limit of n is the system’s dimension L. Thus, the challenge associated
with simulating Ising systems during the phase transition is then ensuring that the error incurred by simulating a finite-size
lattice is sufficiently small for the critical exponents to be calculated with certainty. This has spurred a great many Monte Carlo
simulations of very large lattices in the hope of finding converged critical exponents (cf., e.g., Ref. [17]).

When the system is in a ferromagnetic state, m decays from the spontaneous magnetization value m0 with time as
m / t�j/mz, where j and m are the critical exponents for m0 and n, respectively. From the known value of the ratio j/
m = 0.515 [18] in 3D, one can obtain z from the slope of the m-t curve, obtained for several L, at the critical point. To study
the finite-size dependence of Tc, high-order dimensionless ratios such as the Binder cumulant have been proposed:
U4 ¼
hm4i
hm2i2

; ð5Þ
which takes a value of U4 � 3 when T > Tc (when the magnetization oscillates aggressively around zero), and goes to zero at
low temperatures, when m = m0. As mentioned earlier, at the critical point the correlation length diverges, and therefore U4
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does not depend on L. kMC equilibrium calculations of U4 for several lattice sizes can then be used to calculate the value of
the reciprocal critical temperature bc = J/kTc, whose most accurate estimate is presently bc = 0.2216546 [19,20].

3. Parallel algorithm for lattice systems

3.1. General algorithm

The basic structure of the algorithm is identical to that described in Ref. [14]. First, the entire configurational space is par-
titioned into K subdomains Xk. Note that, in principle, this decomposition need not be necessarily spatial (although this is
the most common one), and partitions based on some other kind of load balancing can be equally adopted. However, without
loss of generality, in what follows it is assumed that the system is spatially partitioned:

1. A frequency line is constructed for each Xk as the aggregate of the individual rates, rik, corresponding to all the
possible events within each subdomain:
Rk ¼
Xnk

i

rik;

where nk and Rk are, respectively, the number of possible events and the total rate in each subdomain k. Here
Rtot ¼

PK
k Rk and N ¼

PK
k nk.

2. We define the maximum rate, Rmax, as:

Rmax P max
k¼1;...K

fRkg;

This value is then communicated globally to all processors.
3. We assign a null event with rate r0k to each frequency line in each subdomain k such that:

r0k ¼ Rmax � Rk;

where, in general, the r0k will all be different. We showed in Ref. [14] that the condition for maximum efficiency is that
step (2) become strictly an equality, such that:

9Xa; a 2 fkg; jRa � Rmax ! ra0 ¼ 0;

i.e. there is no possibility of null events. However, in principle, each subdomain can have any arbitrary r0k as long as all
the frequency lines in each Xk sum to the same global value. This flexibility is one of the most important features of
our algorithm. In fact, as we noted in Ref. [14], in physical problems where the maximum meaningful time step is
capped, Rmax should always be adjusted (increased) accordingly.

4. In each Xk an event is chosen with probability pik = rik/Rmax, including null events with pk0 = rk0/Rmax. For this step,
we must ensure that independent sequences of random numbers be produced for each Xk, using appropriate parallel
pseudo random number generators.

5. As in standard BKL, a time increment is sampled from an exponential distribution:

dtp ¼ �
ln n
Rmax

;

where n 2 (0,1] is a suitable random number. Here, by virtue of Poisson statistics, dtp becomes the global time step
for all of the parallel processes.

6. Communicate boundary events. A global call will always achieve communication of boundary information. However,
depending on the characteristics of the problem at hand, local calls may suffice, typically enhancing performance. This
will be discussed in Section 5.

3.2. The sublattice method for solving boundary conflicts

As we have shown, this algorithm solves the master equation exactly for non-interacting particles. When particles are
allowed to interact across domain boundaries, suitable corrections must be implemented to avoid boundary conflicts. For
lattice-based kinetics with short-ranged interaction distances this is straightforwardly achieved by methods based on the
chessboard sublattice technique. This spatial subdivison method has been used in multispin calculations of the kinetic Ising
model since the early 1990s [21–23]. In the context of parallel kMC algorithms, Shim and Amar were the first to implement
such procedure [24], in which a sublattice decomposition was used to isolate interacting domains in each cycle. The mini-
mum number of sublattices to ensure non-interacting adjacent domains depends on a number of factors, most notably sys-
tem dimensionality.1 In 3D, the chessboard method requires a subdivison into a minimum of either two or eight sublattices,
1 In 2D, four sublattices are sufficient to resolve any arbitrary mapping, as established by the solution to the ‘four-color problem’ [25].
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depending on whether only first or farther nearest neighbor interactions are considered. This is schematically shown in Fig. 1,
where each sublattice is defined by a specific color. The Figure shows the minimum sublattice block (white wireframe) to be
assigned to each processor. These blocks are indivisible and each processor can be assigned only integer multiples of them
in spkMC. The implementation of the sublattice algorithm is as follows. Because here Eq. (1) only involves first nearest neighbor
interactions, the spatial decomposition performed in this work is such that it enables a regular sublattice construction with ex-
actly two colors. In this fashion, each Xk becomes a subcell of a given sublattice, which imposes that each processor must have a
multiple of two (or eight, for longer range interactions) number of subcells. Using a sublattice size greater than the particle
interaction distance guarantees that no two particles in adjacent Xk interact. Step (4) above is then substituted by the following
procedure:

4a. A given sublattice is chosen for all subdomains. This choice may be performed in several ways such as fully random
or using some type of color permutation so that every sublattice is visited in each kMC cycle. Here we have implemented
the former, as, for example, in the synchronous sublattice algorithm (SSL) of Shim and Amar [24]. The sublattice selection
is performed with uniform probability thanks to the flexibility furnished by the spkMC algorithm, which takes advantage
of the null rates to avoid global calls to communicate each sublattice’s probability. Restricting each processor’s sampling
to only one lattice, however, while avoiding boundary conflicts, results in a systematic error associated with spatial cor-
relations. The errors incurred by this procedure will be analyzed in Section 4.
4b. An event is chosen in the selected sublattice with the appropriate probability, including null events. When the
rate changes in each Xk after a kMC cycle are unpredictable, a global communication of Rmax in step (2) is unavoidable.
When the cost of global communications becomes a considerable bottleneck in terms of parallel efficiency, it is worth
considering other alternatives. For the Ising system, we consider the following:
Fig
an
� The simplest way to avoid global communications is to prescribe Rmax to a very large value so as to ensure that
it is never surpassed regardless of the kinetics being simulated. For the Ising model, this amounts to calculating
the maximum theoretical aggregate rate for an ensemble of Ising spins. For a given subdomain Xk, this is:
R0max ¼ knk
expð�DEmaxÞ

1þ expð�DEmaxÞ

� �
;

where Emax is the theoretical maximum energy increment due to a single spin change:

Emax ¼ �2 nbjJj � jHjð Þ

and nb is the lattice coordination number. This procedure is very conservative and may result in a poor
parallel performance.
� Perform a self-learning process to optimize R0max. This procedure is aimed at refining the upper estimate of Rmax

by recording the history of rate changes over the course of a spkMC simulation. For example, one can start with

the maximum theoretical aggregate Ising rate and start decreasing the upper bound to improve the efficiency.

For this procedure, a tolerance to ensure that R0max > Rmax must be prescribed. A sufficiently-long time history of

this comparison must be stored to perform regular checks and ensure that the inequality holds.
Therefore, the algorithm based on the modified steps 4a and 4b above, is only semirigorous for interacting systems due to
the sampling strategies adopted to solve boundary conflicts, which introduce spatial correlations that result in a stochastic
bias. Under certain conditions spkMC does behave rigorously in the sense that this bias is smaller than the intrinsic statistical
error, as we shall see in the following section.
. 1. Sublattice coloring scheme in three dimensions with regular subdivisions. Both two and eight color subdivisions are shown, corresponding to first
d farther nearest neighbor sublattice interactions. The white wireframe indicates the indivisible color block assigned to processors.
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4. Stochastic bias and analysis of errors

The algorithm introduced above eliminates the occurrence of boundary conflicts at the expense of reducing the sampling
configurational space of the system in each kMC step. Because boundary conflicts are inherently a spatial process, this intro-
duces a spatial bias that must be quantified to understand the statistical validity of the spkMC results. Next, we analyze this
bias by testing the behavior of the magnetization when the system is close to the critical point (rc). All the results shown in
this section correspond to the sublattice algorithm using two colors with random selection.

The bias is defined as the difference between a parallel calculation and a reference calculation usually taken as the mean
of a sufficient number of serial runs.2:
2 If a
3 And
bias ¼ hmðrcÞip � hmðrcÞis; ð6Þ
where hm(rc)ip and hm(rc)is are the averages of a number of independent runs in parallel and in serial, respectively, for a
given total Ising system size. The initial (m(t = 0) = m0) and boundary (periodic) conditions in both cases are identical. In
Fig. 2 we show the time evolution of the magnetization of an N=262,144-spin Ising system (218 atoms), averaged over 20
serial runs, used as the reference for the calculation of the bias. The purple shaded region gives the extent of the standard
deviation, which is initially very small, when m0 is very close to one, but grows with time as the system approaches its para-
magnetic state and fluctuations are magnified. The shaded region (in gold) between 10�4 < t < 5 � 10�3k�1 has been chosen
for convenience and marks the time interval over which Eq. (6) is solved.3 The same exercise has been repeated for a
2,097,152-spin (221) sample with 5 serial runs performed (not shown).

Fig. 3 shows the time evolution of the bias for a number of parallel runs corresponding to the two system sizes studied.
The shaded area in the figure corresponds to the interval contained within the standard deviation of the serial case (cf. Fig. 2).
Therefore, this analysis yields the maximum number of parallel events that can be considered to obtain a solution statisti-
cally equivalent to that given by the serial case.

The figure shows up to what number of parallel processes can the serial and sublattice methods be considered statistically
equivalent in the entire range where the bias is calculated. For the 262,144-spin system this is 32, whereas for the 2,097,152
one it is approximately 256. However, runs whose errors are larger than the serial standard deviation at short time scales
(e.g. P64 and P512 for, respectively, the 262,144 and 2,097,152-spin systems) gradually reduce their bias as time pro-
gresses. In fact, at t J 2 � 10�3k�1, all parallel runs fall within rs. It appears, therefore, that fluctuations play an important
role in the parallel runs for low numbers of processes an spkMC cycles. As the accumulated statistics increases (more cycles),
this effect gradually disappears. In any event, the bias is never larger than �2% for all cases considered here.

Although Fig. 3 provides an informative quantification of the errors introduced by the parallel method, it is also important
to separate this systematic bias from the statistical errors associated with each set of independent parallel runs. This is quan-
tified by the standard deviation of the time-integrated bias, defined as:
rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ r2
s

q
; ð7Þ
vailable, an analytical solution may of course be used as a reference as well.
over where the critical exponent in Section 6 is measured.
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where the terms inside the square root are the parallel and serial variances respectively. We next solve Eqs. (6) and (7) dur-
ing the time interval prescribed above for the two system sizes considered in Fig. 3. The absolute value of the systematic bias
is extracted from a number of independent runs (10 and 5 respectively) and plotted in Fig. 4 as a function of the number of
parallel processes. Note that the number of parallel processes is equal to the total number of subcells divided by the number
of different sublattices (=2, in our case).

The figure shows that the absolute value of the bias is always smaller than the statistical error (i.e. the error bars always
encompass zero bias). This implies that, in the range explored, a given problem may be solved in parallel and the result ob-
tained can be considered statistically equivalent to a serial run. The bias is roughly constant and always below 0.5% in the
entire range explored for both cases. However, it is consistently lower for the larger system size, as are the error bars. This is
simply related to the moderation of fluctuations with system size.
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An analysis such as that shown in Fig. 4 allows the user to control the parallel error by choosing the problem size and the
desired number of particles per subcell. Consequently, our method continues to be a controlled approximation in the sense
that the error can be intrinsically computed and arbitrarily reduced.

5. Algorithm performance

The algorithm’s performance can be assessed via its two fundamental contributions, namely, one that is directly related to
the implementation of the minimal process method (MPM) through the null events [26], and the parallel performance per se.
The effect of the null events is quantified by the utilization ratio (UR):
UR ¼ 1�
P

kr0k

KRmax
; ð8Þ
which gives the relative weight of null events on the overall frequency line. The UR determines the true time step gain asso-
ciated with the implementation of the MPM as [14]:
dt� ¼ K 	 UR 	 dts;
where dt* and dts are, respectively, the MPM and standard time steps. This procedure is intrinsically serial, and will result in
superlinear scalar behavior if not taken into account for parallel performance purposes. Next, we show in Fig. 5 the evolution
of the UR for 524,288 (219) and 1,048,576 (220) spin systems. We have done calculations for several numbers of processors
and number of particles per subcell. We find that the determining parameter is the latter, i.e. for a fixed system size and num-
ber of processors used, the UR displays a strong dependence with the number of particles per subcell. The figure shows re-
sults for 512 and 4096 particles per subcell, which in the 524,288(1,048,576)-spin system amounts to, respectively,
1024(2048) and 128(256) subcells per processor. In the latter case, the UR eventually oscillates around 
 82%, whereas
in the former it is approximately 90% (i.e. on average, 
18% and 10% of events, respectively, are null events).

For its part, the parallel efficiency is defined as the wall clock time employed in a serial calculation relative to the wall
clock time of a parallel calculation with K processors involving a K-fold increase in the problem size:
g ¼ tsð1Þ
tpðKÞ

: ð9Þ
The inverse of the efficiency gives the weak-scaling behavior of the algorithm. Due to the absence of fluctuations that exist in
other parallel algorithms based on intrinsically asynchronous kinetics (cf., e.g., Ref. [24]), the ideal parallel efficiency of
spkMC is always 100%.

Let us now consider the efficiency for the following weak-scaling problem for the case where Rmax is communicated glob-
ally. Assuming that frequency line searches scale linearly with the number of walkers in our system, the serial time ex-
pended in simulating a system of N spins to a total time T is:
tsð1Þ ¼ ns texe þOðNÞð Þ;
where ns is the number of cycles required to reach T, and texe is the computation time during each kMC cycle. For its part, the
total parallel time for the K-fold system is:
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tpðKÞ ¼ np texe þOðNÞ þ tcð Þ;
where np is the counterpart of ns and tc = tg + tl is the communications overhead due to global and local calls. In the most
general case, the efficiency is then:
g ¼ nsðtexe þOðNÞÞ
npðtexe þOðNÞ þ tcÞ

: ð10Þ
As mentioned in the paragraph above, when it is ensured that the serial algorithm also take advantage of the time step gain
furnished by the minimal process method, the number of cycles to reach T is the same in both cases, ns � np. The parallel
efficiency then becomes:
g ¼ texe þOðNÞ
texe þOðNÞ þ tg þ tl

: ð11Þ
Next, by virtue of the log P model [27], we assume that the cost of global communications is Oðlog KÞ. The local communi-
cation time, tl, is independent of the number of processors and is proportional to the contact surface between processor sub-
domains, which scales as 
L(d�1), where L is the system size and d is the problem dimensionality [28]. For simple cubic
domains (d = 3), L � N

1
3 and, thus, tl 
 OðN2

3Þ.
If we consider the execution time texe negligible compared to the communication time, we have:
g ¼ c0N

c0N þ c1 log K þ c2N
2
3
¼ 1

1þ ðc1=c0NÞ log K þ c2=c0N
1
3

� � ; ð12Þ
where c0, c1 and c2 are architecture-dependent constants The final expression then reduces to:
g ¼ 1
1þ a log K þ b

; ð13Þ
where a and b are architecture and problem dependent constants that represent the relative cost of global an local commu-
nications, respectively. Thus, the denominator in Eq. (13) contains the three main contributions to the computational over-
head of each Monte Carlo cycle, namely: the cost of linear searches (computation cost) and the cost associated with global
and local calls (communication cost). This simple model is not necessarily intended as predictive, but as a basis for under-
standing the algorithm’s performance. We do this in the scaling tests performed next.

The tests have been carried out on LLNL’s distributed-memory parallel platforms, specifically the ‘‘hera’’ cluster using In-
tel compilers [29]. The scalability calculations were all performed for 512 particles per subcell, regardless of the number of
processors used, for systems with three different numbers of spins per processor, namely 4,194,304 (222), 2,097,152 (221),
and 1,048,576 (220). This means that as the number of particles per processor is increased, more subcells are assigned to each
processor. Fig. 6 shows the parallel efficiency of the spkMC algorithm as a function of the number of processors used for three
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reference Ising systems at the critical point. The fitting constants a and b are given for each case. As the figure shows, the
number of spins per processor has a significant impact on the parallel efficiency, with larger sizes resulting in better perfor-
mances. The efficiency at K = 256 is upwards of 80% for the largest system, and� 60% for the smallest system size. The leap in
efficiency observed in all cases between 2 and 4 processors is caused by the nodal interconnects (band width) connecting
quad cores in the platforms used, and so these two points have not been taken into account for fitting Eq. (13). As expected
from Eq. (12), the fitting constant a scales roughly as N�1, while b deviates about 30% from the expected N�

1
3 scaling. What is

clear is that the local communications cost dominates over the alog K term for any number of processors, an extent that we
have confirmed via parallel profiling tests.

Next we study the case where Rmax is overdimensioned a priori to a prescribed tolerance TOL of the true value to avoid
global calls. In such case, R�max � RNð1þ TOLÞ and tg = 0 so that Eq. (10) becomes:
g ¼ texe þOðNÞ
ð1þ TOLÞðtexe þOðNÞ þ tlÞ

; ð14Þ
stemming from the fact that now the ratio ns=np ¼ dtp=dts ¼ Rmax=R�max. Assuming again that texe is negligible with respect to tl

and the linear term for frequency line searches, the expression for the efficiency takes the form:
g ¼ cN
ð1þ TOLÞðcN þ tlÞ

¼ 1
ð1þ TOLÞð1þ bÞ ; ð15Þ
where b is the same as in Eq. (13).
Combining Eqs. (13) and (15), we arrive at the criterion to choose the optimum algorithm:
TOL <
a log K
1þ b

;

i.e. the chosen tolerance must be smaller than the ratio between the global communication cost and all the other overheads.
As long as the above inequality is satisfied, avoiding global calls by conservatively setting Rmax at the beginning of the sim-
ulation results in a more efficient use of parallel resources. Again, note that, via the constants a and b, this is problem and
machine-dependent, and establishing these with confidence may require considerable testing prior to engaging in produc-
tion runs.

The idea behind using a tolerance to minimize or contain global calls forms the basis of the so-called optimistic algorithms
[30,31], where the parameter (s) controlling the parallel evolution of the simulation are set conservatively—either by a self-
learning procedure or by accepting some degree of error—and monitored sparingly. For example, for the 220-spin Ising sys-
tem, a = 0.03, b = 0.53, TOL varies between < 0.6 and < 4.7% in the range 2 < K < 256. These values may not be sufficient to
encompass the time fluctuations in Rmax, but it is expected that for a higher number of processors the efficiency will improve.
In any case, as the cost of global calls in our method is small compared to that of local calls, an optimistic implementation of
our algorithm may not be warranted. These and more aspects about the parallel efficiency and its behavior will be discussed
in Section 7.
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6. Application: billion-atom Ising systems at the critical point

We now apply the method to study the time relaxation of large Ising systems near the critical point. As we advanced in
Section 2, at the critical point, the relaxation time s diverges as nz, where n / jT � Tcj�m. The scaling at T = Tc is then:
mðtÞ / t�j=zm: ð16Þ
In 3D, we use the known critical temperature J/kTc = 0.2216546 [19,20] to find z. We start with all spins +1 and let m(t) decay
from its initial value of unity down to zero. At each time point, we can find the critical exponent z from:
z ¼ �j
m

dðlog mÞ
dðlog tÞ

� ��1

; ð17Þ
where the ratio j/m takes the known value of 0.515 [18]. We have carried out simulations with lattices containing
1024 � 512 � 512 (228), 1024 � 1024 � 512 (229), and 1024 � 1024 � 1024 (230) spins. The results are shown in Fig. 7 for crit-
ical exponents calculated during t > 0.025k�1, from time derivatives averaged over 300 to 500 timesteps.

At long time scales, the critical exponent oscillates around values that range from, roughly, 2.06 to 2.10 depending on
system size. This in good agreement with the converged consensus value of 
2.04 published in the literature [32] (shown
for reference in Fig. 7). However, as time increases, the oscillations increase their amplitude with inverse system size.
Oscillations of this nature also appear in multi-spin calculations, both for smaller [33–35] and larger [36] systems, where
the inverse proportionality with system size is also observed. These may be caused by insufficient statistics due to size
limitations, as we have shown that, under the conditions chosen for the simulations, our calculations are statistically
equivalent to serial ones (cf. Fig. 4). The effect of the system size is also clearly manifested in the relative convergence
rate of z. As size increases, convergence to the expected value of 2.04 is achieved on much shorter time scales, i.e. fewer
kMC cycles.
7. Discussion

We now discuss the main characteristics of our method. We start by considering the three factors that affect the perfor-
mance of our algorithm:

(i) Number of particles per subcell. This is the most important variable affecting the algorithm’s performance, as it controls
the intrinsic parallel bias and the utilization ratio. Higher numbers of spins per subcell both reduce the bias (cf. Figs. 3
and 4) and increase the UR (Fig. 5), bolstering performance. However, this also results in an increase of the value of
Rmax, which causes a reduction in dtp. Thus, decreasing the bias and increasing the time step are actions that may work
in opposite directions in terms of performance, and a balance between both should be found for each class of prob-
lems. For the large Ising systems run here we have used an optimal value of 512 particles per subcell.

(ii) Number of particles per processor. This parameter affects the parallel efficiency via the number of spins per processor Nk

(for regular space decompositions, KNk � N). As Nk increases, a significant improvement is observed. This is directly
related to an increase of the computation-to-communications ratio, symbolized by decreases in a and b in Eq. (13).

(iii) Total system size. As Figs. 3 and 4 show, for a given sublattice decomposition, a larger system incurs in smaller relative
fluctuations in the magnetization, which results in a more contained bias.

Through the constants a and b, the parallel efficiency strongly depends on the latency and bandwidth of the communi-
cation network used. An advantageous feature of our method is that, by construction, local calls are the dominant contribu-
tion to the asymptotic scaling behavior. This is important because it makes our method ideally scalable at a level only
dictated by the system size. Exploring other efficiency-increasing alternatives based on controlling the cost of global calls
may result in some efficiency gain, but only marginal and for low values of K. Prescribing a tolerance on the expected fluc-
tuations of Rmax is one such alternative which is in the spirit of so-called optimistic kMC methods. Ideally its value is set by
way of a self-learning procedure that maximizes the efficiency.

In any case, the intersection of items (i), (ii) and (iii) above configures the operational space that determines the class of
problems that our method is best suited for: large (multimillion) systems, with preferably a sublattice division that achieves
an optimum compromise between time step gain and lowest possible bias, with the maximum possible number of particles
per processor. These are precisely the conditions under which we have simulated critical dynamics of 3D Ising systems, with
very good results. We conclude that spkMC is best designed to study this class of dynamic problems where fluctuations are
important and there is an unequivocal size scaling. This includes applications on many other areas of physics, such as crystal
growth, irradiation damage, plasticity, biological systems, etc., although other difficulties due to the distinctiveness of each
problem may arise that may not be directly treatable with the algorithm presented here. We note that, because the parallel
bias is seen to saturate for large numbers of parallel processes, and the efficiency is governed mostly by the local commu-
nications overhead, which does not depend on K, the only limitation to using spkMC is given by the number of available
processors.
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8. Summary

We have developed an extension of the synchronous parallel kMC algorithm presented in Ref. [14] to discrete lattices. We
use the chess sublattice technique to resolve boundary conflicts, and have quantified the resulting spatial bias. The algorithm
displays a robust scaling, governed by the cost of local communications as well as by the spatial decomposition adopted. We
have applied the method to multimillion-atom three-dimensional Ising systems close to the critical point, with very good
agreement with published state-of-the-art results.
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